Asymptotic normalization coefficients from the ${ }^{14} \mathrm{C}(\mathrm{d}, \mathrm{p}){ }^{15} \mathrm{C}$ reaction

A.M. Mukhamedzhanov, V. Burjan, ${ }^{1}$ M. Gulino, ${ }^{2}$ Z. Hons, ${ }^{1}$ V. Kroha, ${ }^{1}$ J. Mrazek, ${ }^{1}$ J. Novak, ${ }^{1}$ S. Piskor, ${ }^{1}$ S. Romano, ${ }^{2}$ M.L. Sergi, ${ }^{2}$ C. Spitaleri, ${ }^{2}$ and R.E. Tribble
${ }^{1}$ Nuclear Physics Institute, Czech Academy of Sciences, 25068 Rez-Prague, Czech Republic
${ }^{2}$ Universita di Catania and INFN Laboratori Nazionali del Sud, Catania, Italy

The ${ }^{14} \mathrm{C}(\mathrm{d}, \mathrm{p}){ }^{15} \mathrm{C}$ reaction plays an important role in inhomogeneous big bang models. In [1] it was shown that the ${ }^{14} \mathrm{C}(\mathrm{n}, \gamma){ }^{15} \mathrm{C}$ radiative capture at astrophysically relevant energies is peripheral, that is the overall normalization of its cross section is determined by the asymptotic normalization coefficient (ANC) for ${ }^{15} \mathrm{C} \rightarrow{ }^{14} \mathrm{C}+n$. Here we present new measurements of the ${ }^{14} \mathrm{C}(\mathrm{d}, \mathrm{p}){ }^{15} \mathrm{C}$ differential cross sections at the deuteron incident energy of 17.06 MeV and the analysis to determine the ANCs for neutron removal from the ground and first excited states of ${ }^{15} \mathrm{C}$. The measurement of the differential cross section of the ${ }^{14} \mathrm{C}(\mathrm{d}, \mathrm{p}){ }^{15} \mathrm{C}$ reaction was carried out at the $\mathrm{U}-120 \mathrm{M}$ cyclotron isochronous cyclotron at the Nuclear Physics Institute of the Czech Academy of Sciences. The deuteron beam with the energy of 17.06 MeV was led into a target chamber with ${ }^{14} \mathrm{C}$ and mylar targets. Reaction products were measured by four $\Delta \mathrm{E}-\mathrm{E}$ telescopes assembled from thin surface barrier silicon and thick $\mathrm{Si}(\mathrm{Li})$ detectors with thickness about $200 \mu \mathrm{~m}$ and 4 mm respectively

The angular distributions of deuterons from the reaction ${ }^{14} \mathrm{C}(\mathrm{d}, \mathrm{p}){ }^{15} \mathrm{C}$ corresponding to the two bound states in ${ }^{15} \mathrm{C}$ calculated using adiabatic wave Born approximation, which is the simplified version of the CDCC and determined ANCs compared with existing data. The paper has been published in [2].

FIG. 1. Angular distributions from the ${ }^{14} \mathrm{C}(\mathrm{d}, \mathrm{p}){ }^{15} \mathrm{C}$ reaction for the transitions leading to the ground and 0.740 MeV states in ${ }^{15} \mathrm{C}$. DWBA calculations were made with optical model parameter sets given in [2].
[1] N.K. Timofeyuk, D. Baye, P. Descouvemont, R. Kamouni, and I.J. Thompson, Phys. Rev. Lett. 96, 162501 (2006).
[2] A.M. Mukhamedzhanov et al., Phys. Rev. C 84, 024616 (2011).

