Asymptotic normalization coefficients from the ${}^{14}C(d, p){}^{15}C$ reaction

A.M. Mukhamedzhanov, V. Burjan,¹ M. Gulino,² Z. Hons,¹ V. Kroha,¹ J. Mrazek,¹ J. Novak,¹ S. Piskor,¹ S. Romano,² M.L. Sergi,² C. Spitaleri,² and R.E. Tribble

¹Nuclear Physics Institute, Czech Academy of Sciences, 250 68 Rez-Prague, Czech Republic

² Universita di Catania and INFN Laboratori Nazionali del Sud, Catania, Italy

The ¹⁴C(d,p)¹⁵C reaction plays an important role in inhomogeneous big bang models. In [1] it was shown that the ¹⁴C(n, γ)¹⁵C radiative capture at astrophysically relevant energies is peripheral, that is the overall normalization of its cross section is determined by the asymptotic normalization coefficient (ANC) for ¹⁵C \rightarrow ¹⁴C+*n*. Here we present new measurements of the ¹⁴C(d,p)¹⁵C differential cross sections at the deuteron incident energy of 17.06 MeV and the analysis to determine the ANCs for neutron removal from the ground and first excited states of ¹⁵C . The measurement of the differential cross section at the Nuclear Physics Institute of the Czech Academy of Sciences. The deuteron beam with the energy of 17.06 MeV was led into a target chamber with¹⁴C and mylar targets. Reaction products were measured by four $\Delta E - E$ telescopes assembled from thin surface barrier silicon and thick Si(Li) detectors with thickness about 200 µm and 4 mm respectively

The angular distributions of deuterons from the reaction ${}^{14}C(d,p){}^{15}C$ corresponding to the two bound states in ${}^{15}C$ calculated using adiabatic wave Born approximation, which is the simplified version of the CDCC and determined ANCs compared with existing data. The paper has been published in [2].

FIG. 1. Angular distributions from the ${}^{14}C(d,p){}^{15}C$ reaction for the transitions leading to the ground and 0.740 MeV states in ${}^{15}C$. DWBA calculations were made with optical model parameter sets given in [2].

- N.K. Timofeyuk, D. Baye, P. Descouvemont, R. Kamouni, and I.J. Thompson, Phys. Rev. Lett. 96, 162501 (2006).
- [2] A.M. Mukhamedzhanov et al., Phys. Rev. C 84, 024616 (2011).